WE CODE NOW
  • Home 
  • Blog 
  • Guides 
Guides
  1. Home
  2. Guides
  3. Python Programming
  4. Introduction to Data Analysis with Pandas

Introduction to Data Analysis with Pandas

Posted on June 1, 2024  (Last modified on June 8, 2024) • 2 min read • 274 words
Python
 
Data Analysis
 
Pandas
 
Data Manipulation
 
Python
 
Data Analysis
 
Pandas
 
Data Manipulation
 
Share via

Get started with data analysis in Python using the Pandas library, including data manipulation, aggregation, and visualization techniques.

On this page
  • Installing Pandas
  • Loading Data
    • Reading Data from a CSV File
  • Data Manipulation
    • Selecting Data
    • Filtering Data
    • Adding New Columns
  • Data Aggregation
    • Grouping Data
    • Pivot Tables
  • Data Visualization
    • Plotting Data
  • Conclusion

Introduction to Data Analysis with Pandas  

Pandas is a powerful library for data analysis in Python. This guide covers data manipulation, aggregation, and visualization techniques using Pandas.

Installing Pandas  

First, install the Pandas library.

pip install pandas

Loading Data  

Reading Data from a CSV File  

import pandas as pd

df = pd.read_csv("data.csv")
print(df.head())

Data Manipulation  

Selecting Data  

# Select a single column
print(df["column_name"])

# Select multiple columns
print(df[["column1", "column2"]])

Filtering Data  

# Filter rows based on a condition
filtered_df = df[df["column_name"] > 50]
print(filtered_df)

Filtering can also be combined with logical operators.

filtered_df = df[(df["column1"] > 50) & (df["column2"] < 100)]
print(filtered_df)

Adding New Columns  

# Add a new column based on existing columns
df["new_column"] = df["column1"] + df["column2"]
print(df.head())

New columns can also be derived from existing ones.

df["double_column"] = df["column1"] * 2
print(df.head())

Data Aggregation  

Grouping Data  

# Group by a column and calculate the mean
grouped_df = df.groupby("column_name").mean()
print(grouped_df)

Grouping can also include multiple aggregation functions.

grouped_df = df.groupby("column_name").agg({"column1": "mean", "column2": "sum"})
print(grouped_df)

Pivot Tables  

# Create a pivot table
pivot_table = df.pivot_table(values="value_column", index="index_column", columns="columns_column", aggfunc="mean")
print(pivot_table)

Pivot tables can also include multiple levels of indexing.

pivot_table = df.pivot_table(values="value_column", index=["index1", "index2"], columns="columns_column", aggfunc="mean")
print(pivot_table)

Data Visualization  

Plotting Data  

import matplotlib.pyplot as plt

# Plot a line chart
df.plot(x="column1", y="column2")
plt.show()

# Plot a bar chart
df["column_name"].value_counts().plot(kind="bar")
plt.show()

Visualization can also include customizing the plots.

ax = df.plot(x="column1", y="column2", kind="scatter")
ax.set_title("Scatter Plot")
ax.set_xlabel("Column 1")
ax.set_ylabel("Column 2")
plt.show()

Conclusion  

Pandas is an essential tool for data analysis in Python. Practice loading, manipulating, aggregating, and visualizing data using Pandas to enhance your data analysis skills.

 Web Scraping with Python and BeautifulSoup
Working with APIs in Python 
On this page:
  • Installing Pandas
  • Loading Data
    • Reading Data from a CSV File
  • Data Manipulation
    • Selecting Data
    • Filtering Data
    • Adding New Columns
  • Data Aggregation
    • Grouping Data
    • Pivot Tables
  • Data Visualization
    • Plotting Data
  • Conclusion
Copyright © 2024 WE CODE NOW All rights reserved.
WE CODE NOW
Link copied to clipboard
WE CODE NOW
Code copied to clipboard